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Structure Prediction for Gland Segmentation
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Abstract— We present a novel method to segment
instances of glandular structures from colon histopathol-
ogy images. We use a structure learning approach which
represents local spatial configurations of class labels, cap-
turing structural information normally ignored by sliding-
window methods. This allows us to reveal different spatial
structures of pixel labels (e.g., locations between adja-
cent glands, or far from glands), and to identify correctly
neighboring glandular structures as separate instances.
Exemplars of label structures are obtained via clustering
and used to train support vector machine classifiers. The
label structures predicted are then combined and post-
processed to obtain segmentation maps. We combine hand-
crafted, multi-scale image features with features computed
by a deep convolutional network trained to map images to
segmentation maps. We evaluate the proposed method on
the public domain GlaS data set, which allows extensive
comparisons with recent, alternative methods. Using the
GlaS contest protocol, our method achieves the overall best
performance.

Index Terms— Molecular and cellular imaging, gastroin-
testinal tract, segmentation.

I. INTRODUCTION

H ISTOLOGICAL assessment of gland formation and
morphology informs diagnosis, prognosis and treatment

planning of patients [1]. It is useful for grading of adeno-
carcinomas in colon, breast, and prostate. Such assessment
is labour intensive, performed by highly trained patholo-
gists, and often has limited reproducibility. The emergence
of whole-slide imaging is increasing the volume of digital
histology image data to be analysed, exacerbating the problem.
Algorithms capable of reliably segmenting glandular struc-
tures automatically would accelerate analysis and pro-
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Fig. 1. Glandular structures in the Warwick-QU dataset [2]. (a) Glands
in healthy tissue. (b) Left to right: adenoma, moderately differentiated,
and poorly differentiated adenocarcinoma.

vide reproducible, quantitative measures of gland morphology.
The development of such algorithms is challenging because
malignancy results in irregular morphology and poorly dif-
ferentiated gland boundaries, and because glandular structures
can be closely packed together but need to be segmented as
separate instances. Glands in healthy epithelial tissue have a
clear structure with interior lumen surrounded by columnar
epilthelial cells (Fig. 1 (a)). This structure degenerates in mod-
erately or poorly differentiated adenocarcinomas (Fig. 1 (b)).

Gland segmentation, and more generally semantic pixel
labelling, often incorporates a sliding window classification
procedure based on features extracted from a local window
centred at each image location (e.g. [3], [4]). Such a procedure
ignores the class labels’ spatial structure. Instead, we propose
to learn discriminative models for segmentation in which local
spatial structures are encoded in the label (output) space as
well as in the feature (input) space. By directly employing
label structure we can more reliably separate objects and
thus improve instance segmentation. The number of possible
label structures grows exponentially as the size of the local
region considered increases, posing a challenge. We show how
this large output space can be handled by combining small
numbers of local structure exemplars obtained via clustering.

We combine hand-crafted features with learned deep con-
volutional features to capture image context information.
We conduct experiments with the publicly available GlaS
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dataset [2] showing that the proposed use of local structure
prediction improves gland segmentation compared with using
binary classifiers. Direct comparison with other published
results indicates that our method is the top ranked.

This paper follows on from short conference papers that
evaluated choices of image features [4] and a preliminary
version of local structure prediction [5]. Contributions of this
paper with respect to those earlier ones include the following.

1) We summarise the literature on gland segmentation,
reviewing progress over the last decade.

2) We incorporate features learned using fully convolu-
tional networks (FCN) into the local structure predic-
tion framework, whereas previously [5] we tested the
feasibility of structure learning using only hand-crafted
features.

3) We evaluate combining feature types in the context of
local structure prediction, whereas previously [4] we
combined features only in a binary (gland vs non-gland)
setting.

4) We investigate the effect of the number of structure
exemplars (clusters) at both training and test time.

5) We employ the full GlaS dataset [2] for all evaluations
presented in this paper whereas our previously published
experiments used only a subset of it.

6) The GlaS dataset allows extensive comparisons with
recent, alternative methods; using the GlaS contest pro-
tocol, our method achieves the best overall performance.

II. RELATED WORK

Here we review how gland segmentation has progressed
over the past decade. Early methods attempted to segment
glandular structures by first explicitly identifying substruc-
tures such as nuclei and lumen. Farjam et al. [6] performed
k-means clustering of local texture features to distinguish
stroma and lumen from regions more densely populated with
nuclei. However, robust gland segmentation requires more
domain knowledge to be incorporated whether modeled explic-
itly or acquired via machine learning with a supervision mech-
anism. A popular approach has been to classify pixels based
on colour, identify candidate lumen regions, and run either
region growing or contour-based segmentation initialised at
each of these candidates. Wu et al. [7] described a region
growing algorithm initialised in lumen regions obtained by
thresholding. Naik et al. [8] used supervised pixel colour
classification to label pixels as nuclear, cytoplasmic, or lumen.
Candidate gland lumen regions were identified based on
size and bordering epithelial cytoplasm. These were used to
initialise level-sets contour segmentation; contours evolved
outward with stopping gradient based on nuclei likelihood. In a
similar spirit, Nguyen et al. [9] grouped nuclear and cytoplas-
mic pixels to obtain gland boundary segments and then grew
lumen regions in a controlled way until they met with sur-
rounding gland boundary segments. Gunduz-Demir et al. [10]
used k-means colour clustering to identify pixel clusters
corresponding approximately to nuclei and lumen. They ran
an iterative algorithm to fit discs inside nuclear regions and
lumen regions. They then clustered lumen discs into two
clusters based on features including size and displacement of

neighbouring discs. Finally, lumen discs in the cluster more
likely to represent glands were used to seed region growing
constrained by line segments joining proximal pairs of nuclear
discs. More recently, Cohen et al. [11] classified pixels as
nuclei, immune system, lumen, cytoplasm, stroma, and goblet
cells based on local colour statistics using two stages of
random forest classification. Candidate lumen boundaries were
then used to initialise active contours with external forces
designed to attract the contour to nuclear pixels and repel it
from stroma and immune system pixels, encouraging it to stop
at the boundary of the nuclear layer at the gland periphery.
A final classification step reduced false positives based on
shape features and pixel labels. The methods described above,
based on iterative segmentation initialised at lumina and
terminated based on constraints provided by pixels classified
as nuclear, can work well for well-formed glandular structures.
However, they will fail when the spatial assumptions on which
they are based are badly violated. This will often be the case
for malignant glands with deformation of gland morphology.

Ben Cheikh et al. [12] used colour classification to locate
cell nuclei. They applied advanced morphological operators to
nuclear objects to obtain candidate epithelial layers and gland
central regions. These were combined to obtain glandular
structures. Nguyen et al. [13] formulated gland segmentation
as a graph cuts problem, constructing graphs with nuclei and
lumen as nodes. Nuclei were detected based on radial sym-
metry and classified as epithelial or stromal using a support
vector machine (SVM) based on local texture features. This
method was able to detect glands without lumen and glands
with multiple lumina. Sirinukunwattana et al. [14], [15] found
candidate glands by classifying superpixels as gland or non-
gland based on colour and texture features extracted from
superpixel neighbourhoods. In [15] they initialised a polygonal
contour model for each such candidate and inferred both the
number of vertices in the polygon and their location based
on reversible-jump Markov chain Monte Carlo. After post-
processing to remove some false positives, the MAP contours
obtained compared favorably with several previous algorithms.
Scattering coefficients have been used as texture features in
the computation of glandular structure maps [14]. Their use
with a convolutional neural network (CNN) in addition to
raw image values to detect tumour cells in histology images
showed that CNN can perform better when the input consists
of a combination of handcrafted features and raw data [16].

Research on gland segmentation was invigorated by the
GlaS contest [2]. Its focus on shared data and compara-
tive evaluation of methods in a controlled setting yielded
an informative snapshot of the state-of-the-art. Several of
the most highly ranked GlaS entries were based on slid-
ing window classifiers incorporating CNNs. The 5th-placed
entry, CVML [2], used a CNN trained to classify small
19 × 19 pixel windows into three classes representing gland
lumen, epithelial cells forming the gland boundary, and inter-
gland tissue; class probability maps thus obtained were used
to drive level set segmentation. In general, sliding window
classifiers trained to classify gland versus non-gland pixels can
result in neighbouring glandular structures being erroneously
merged. In an effort to prevent this, the 2nd-placed entry from
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ExB [2] trained a CNN with two paths, one to classify gland
versus non-gland pixels, the other to classify pixels close to
gland boundaries versus all other pixels. For the same reason,
Kainz et al. [3] annotated pixels close to at least two gland
objects in the training data and trained a CNN to classify
windows as centred on such pixels or not. A second CNN
was trained to classify windows as centred on gland or non-
gland from either benign or malignant tissue (i.e. four classes).
An additive combination of outputs from these two classifiers
gave better segmentation results than the latter CNN alone.
Finally, gland segmentation was refined using convex geodesic
active contours. The 4th-placed entry, from our group, used
SVM classifiers with features from a CNN combined with
features extracted from multi-scale patches [4]. Fu et al. [17]
developed a sliding window detector in which windows were
circular. A conditional random field (CRF) model was trained,
after transforming windows to polar coordinates, to find the
closed contour in each window most likely to be a gland
boundary. Support vector regression on pyramid HOG fea-
tures was used to select the strongest gland candidates from
the CRF. This method assumes glands are star shaped (in the
sense of Veksler [18]) which is not always the case, especially
with malignant glands.

Fully convolutional networks (FCNs) can be trained
end-to-end to map images directly to their segmentation
maps [19]. Their typical network architecture, in which
consecutive convolution layers are interspersed with spatial
pooling operations, can result in FCN outputs having low
resolution. However, subsequent upsampling operators and
convolutions can be used to learn more precise output. Four
methods for gland segmentation based on FCN variants with
image-to-segmentation-map training have been proposed in the
literature [20]–[23]. Ben Taieb and Hamarneh [20] used a
loss function for a deep FCN with penalty terms that encour-
aged gland boundary smoothness and correct label hierarchy.
An indicator function was used in the loss function to indicate
whether or not an assignment was valid. Their experiments
suggest that this can help improve gland segmentation. Three
other methods based on FCN incorporate some mechanism to
help avoid nearby neighbouring gland structures from merging
erroneously. The U-net of Ronneberger et al. [22] (the third
ranked team in GlaS) is an FCN modified to yield more
precise segmentation. It learns to map a raw RGB image to a
binary gland segmentation. As well as a contracting analysis
path and an upsampling synthesis path with many feature
channels, this network combines high-resolution features from
the contracting path with the upsampling layers so that a suc-
cessive convolution layer can learn to assemble a more precise
output. A high pixel-wise loss was used for pixels in gaps
between glandular structures in the training set. The winning
GlaS entry from Chen et al. [21] used an FCN combining
upsampling from layers at different depths to enhance multi-
scale analysis due to the varying effective receptive field size.
Their network was trained simultaneously to output both a
gland foreground map and a gland boundary map. These maps
were then logically combined to obtain a gland foreground
map in which nearby glands were kept separate. More recently,
Xu et al. [23] incorporated boundary maps into an FCN with

a complex structure. A deep convolutional channel predicted
a gland foreground map; outputs from N of its convolutional
layers were fed as inputs to a side channel which predicted
a gland boundary map through a linear combination of maps
computed from each of the N stages it was fed. A final CNN
stage combined these maps to predict a gland instance map.
They reported state-of-the-art results on the GlaS dataset.

In summary, today’s most successful methods are based
on supervised machine learning, typically incorporating
CNNs enhanced by some mechanism to prevent neighbouring
gland structures from merging. This contrasts with earlier
methods which tended to use pipelines reliant on detection of
components such as lumen and nuclei to seed and constrain
multiple instances of region growing or contour search.

III. METHOD

Gland segmentation takes a histology image as input
and outputs a label image in which pixel values denote
gland or non-gland. We formulate this in terms of local
label structure prediction. In summary, for each location on a
rectangular grid we extract image features and apply support
vector machine classifiers to predict a local label patch centred
at that location. These label patches are obtained as combina-
tions of label structure exemplars. Neighbouring label patch
predictions overlap so they are averaged. A post-processing
step is applied to identify the regions corresponding to indi-
vidual glandular structures. We first describe label structure
classification and post-processing before giving details of the
features used to capture image context using both handcrafted
features and deep convolutional networks.

A. Structure Prediction

We denote a labelled data set as {(Ii , Gi )}, i = 1, . . . , n,
where Ii is an image and Gi its ground truth annotation.
In Gi , each gland region is represented by pixels assigned a
unique positive integer while non-gland (background) regions
are zero. Figs. 10 and 11 show examples with different gland
regions mapped to different colours. Let xi j ∈ R

d denote
the feature representation at point si j of image Ii . Let ui j

denote a label patch extracted at the same location from the
corresponding binary ground truth segmentation map. Fig. 3
shows some examples of label patches. Let ui jk ∈ [0, 1]
denote the kth element of ui j , i.e., the kth location in the
label patch. If this location is definitely foreground (gland)
then ui jk = 1. If it is definitely background (non-gland)then
ui jk = 0.

A common approach is to train a binary classifier on a set
of labeled windows, {xi j , yi j }, where yi j ∈ {0, 1}. A binary
label, yi j , can be computed from ui j by thresholding:

yi j =

⎧
⎪⎪⎨

⎪⎪⎩

1
1

d ′
d ′

∑

k=1

ui jk > t

0 otherwise.

(1)

where t is a user-specified threshold. Instead, our proposed
method directly finds a mapping from the input feature space
to a set of label exemplars {vk}, k = 1, . . . , K . At test
time, the method directly predicts the local structure of the
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Fig. 2. Left: a traditional approach to patch-based segmentation. Right: using local structure learning and prediction.

Fig. 3. (a) An image, (b) its ground truth, and (c) example label patches extracted from (b).

Fig. 4. Label exemplars obtained using K-means (K = 30).

labels for any given image location (see Fig. 2) using these
exemplars. The exemplars can be thought of as visual words
for binary images. A labelling can be reconstructed as a
weighted combination of those exemplars. The exemplars can
be obtained, for example, by clustering training label patches
{ui j } and treating each cluster center, vk , as an exemplar. Fig. 4
shows exemplars obtained using K -means.

Once we have K exemplars, structure classifiers are defined,
each of which separates a label configuration vk from other
configurations vm, ∀m, m �= k. We use linear classifiers,

fk(xi j ) = wT
k xi j + bk (2)

and learn (wk, bk) using an SVM optimization,

arg min
wk,bk

1

2
‖wk‖2

2 + λ

|U |
∑

i, j∈U
max(0, 1 − wT

k xi j − bk)

+ λ

|Ū |
∑

i, j∈Ū
max(0, 1 + wT

k xi j + bk) (3)

where λ is a regularization parameter and U is defined as

U = {(i, j) | ‖ui j − vk‖2
2 ≤ ‖ui j − vm‖2

2, ∀m, m �= k}. (4)

Ū is the complement of U . We used the LibLinear library [24]
to implement (3). The output of each classifier, fk , is calibrated
using Platt scaling [25] to obtain probabilities pk(xi j ) using
the logistic function,

pk(xi j ) = 1

1 + exp−Ak fk(xi j )−Bk
(5)

where Ak and Bk are two free parameters to be learned.
For a given test image location si j , the learned classifiers
{(wk, bk)}, k = 1, . . . , K output the probabilities:

pi j = [
p1(xi j ), . . . , pK (xi j )

]
. (6)

Let P represent a set of r (≤ K ) indices which correspond to
the largest r values in pi j . Renormalising,

qk(xi j ) = pk(xi j )
∑

m∈P pm(xi j )
, ∀k ∈ P, (7)

we obtain a distribution qi j = [
q1(xi j ), . . . , qr (xi j )

]
that

indicates the extent to which the label structure at si j is
exemplified by each of the r most relevant exemplars. The
label patch ui j at a given test image location si j can be
reconstructed by weighting the label exemplars accordingly:

ui j ≈
∑

r∈P
qr (xi j )vr (8)

In this way the local label structure can be reconstructed from
a few exemplars. When r = 1 this amounts to selecting the
exemplar with the highest Platt-scaled classification score.
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Fig. 5. Proposed FCN architecture. Blue: FCN-8s [19]. Red: new layers appended in this work.

B. Post-Processing
Structure prediction (Section III-A) outputs a label window

centred on each location in a test image (Eq. (8)). Nearby
label windows overlap and so are averaged to obtain a map in
which higher values correspond to probable gland locations.
Example label maps are shown in Figs. 10 and 11. To segment
individual glands from this map, we apply a fixed threshold of
T (estimated from training data, see IV-C) followed by mor-
phological erosion with circular structuring element of radius
5 pixels to help reduce any connectivity between adjacent
glands. Small connected components (area < 900pixels) are
discarded. (To give an idea of scale, images in Fig. 10 are
775 × 522 pixels). Dilation with structuring element of radius
10 pixels restores objects to their original size given that the
system was trained using the ground truth images which had
been eroded using a structuring element of radius 5. Finally,
a hole filling algorithm is run to remove holes in foreground
regions.

C. Feature Representation
Let si j be the j th sampling point from image Ii . We use

two sets of features to represent image context around si j : deep
features extracted by applying a trained FCN, and HC features
with locality-constrained linear coding (LLC) [26]. These two
representations are normalized independently using the square-
root and L2 normalizations as in [27] and concatenated.

1) Fully Convolutional Neural Networks: To capture multi-
level contextual information we make use of a fully convolu-
tional neural network [19]. This network can be trained in an
end-to-end (image-to-image) manner, which takes an image
as input and produces a correspondingly-sized probability
map in a single forward propagation. The network contains
a downsampling path and an upsampling path (Fig. 5). The
downsampling path contains convolutional and max pooling
layers, and aims at extracting the high level (coarse) abstrac-
tion information. The upsampling path contains convolution
and upsampling layers which try to extract the fine (pixel-
level) detail. We use a transfer learning approach to mitigate
the challenge of insufficient training data. Our starting point is
the pretrained FCN model from [19], an FCN-8s architecture
with 21 layers, trained using ImageNet and fine-tuned on
the Pascal VOC dataset. For gland segmentation, we append
two convolutional layers. The first, containing 512 output
channels, acts as a feature extractor; the second, containing

2 channels, provides foreground (gland) and background (non-
gland) scores. By leveraging an existing pre-trained network,
this design keeps relatively low the number of new parameters
to be learned for gland segmentation thus reducing the cost of
training and the risk of over-fitting on a dataset of relatively
small scale. In structure prediction experiments we use as
features the penultimate layer’s output (512 channels).

The network was implemented using Caffe [28]. Parameters
in the new layers were initialized using the “Xavier” initial-
ization [29] and the other 21 layers were initialized as the pre-
trained FCN from [19]. The whole network was then trained
in an end-to-end fashion by stochastic gradient descent with
maximum number of iterations set to 75, 000. Since we need
to fine-tune the FCN-8s architecture (shaded blue in Fig. 5)
and to learn from scratch the parameters of the new lay-
ers (shaded red in Fig. 5), we set a higher learning rate for
the latter (10−4) than for the former (10−5 for FCN-8s).

The network was trained on randomly cropped sub-images
of size 384×384 pixels. Data augmentation (rotations and flip-
ping) was used to increase effectiveness of the network while
reducing risk of over-fitting. At test time, we extracted overlap-
ping sub-images of size 384×384 with overlap of 200 pixels.
We averaged adjacent probability maps to obtain the final
prediction for an image. This sliding window approach reduces
memory requirements compared to an FCN applied to entire
images.

2) Hand-Crafted Features: Our second representation is
inspired by zoom-out features [30] and was built by concate-
nating window descriptors computed from concentric windows
of sizes 48 × 48, 80 × 80, 128 × 128, and 200 × 200 centered
at si j , as well as from the entire image. In addition, to capture
local fine structure, the 48 × 48 window was divided into
nine 16 × 16-pixel windows and the feature representations
from these windows also concatenated. This is illustrated
in Fig. 6.

Within each window, root-SIFT [31], vectorized raw-pixel
values, and multi-resolution local patterns [32] were extracted
from patches of size 16 × 16 with a step size of 2 pixels.
For each feature type, features extracted from the three color
channels (R, G, and B) were concatenated. Average pooling
was used to get window representations from the dictionary-
encoded features with a dictionary size of 200. (See [4]
for experiments with different dictionary sizes). We used
square-root and L2 normalizations [27] to normalize the
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Fig. 6. Feature representation at sij by HC features.

TABLE I
DATASET COMPOSITION

pooled encoded features from each individual window before
concatenation. The final dimensionality of HC features was
8400 (14 windows × size of the dictionary × 3 features).

IV. EXPERIMENTS

A. Dataset

The Warwick-QU dataset was used for evaluation [15].
It formed the basis of the Gland Segmentation (GlaS) Chal-
lenge Contest hosted by MICCAI [2] and is now publicly
available.1 It consists of 165 images each annotated with
an associated ‘ground truth’ segmentation and histological
grade (benign or malignant). These 165 images were extracted
from a set of 52 visual fields which had been selected from 16
H&E-stained whole-slide images (from 16 patients) of stage
T3 or T4 colorectal adenocarcinoma. They had been scaled
to have pixel resolution of 0.620μm (20× magnification) and
were typically of size 775 × 522 pixels. An expert pathologist
had provided ground truth which involved assessing the grade
of each visual field and delineating the glandular structures.
In line with GlaS Challenge protocol, we used the provided
split into a training part and two test parts: test part A and test
part B. The training part has 85 images: 37 from visual fields
graded as benign and 48 from fields graded as malignant. Test
A has 60 images (33 benign, 27 malignant) and test B has
20 images (4 benign and 16 malignant). Figs. 10 and 11 show
example images. Table I summarises dataset composition.

B. Evaluation Measures

Evaluation used three criteria, following [2]: detection accu-
racy, segmentation score, and shape dissimilarity. Mean values

1http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/
glascontest/

over all the test images under each criteria were used to rank
different methods.

1) Detection Accuracy: The F1 score is employed to measure
the detection accuracy of individual glandular objects:

F1 = 2P R

P + R
, P = NT P

NT P + NF P
, R = NT P

NT P + NF N

where NT P , NF P , and NF N denote the number of true
positives, false positives, and false negatives, respectively. Cor-
respondence is established between each segmented instance
and the ground truth object that has maximum overlap with it.
A segmented instance that intersects with at least 50% of its
corresponding ground truth object is considered a true positive,
otherwise it is considered a false positive. A ground truth
object that has no corresponding segmented instance, or that
has less than 50% of its area overlapped by its corresponding
segmented instance, is considered a false negative.

2) Segmentation Score: Pixel-level Dice score of a segmen-
tation O with ground truth G is defined as

Dp(G,O) = 2|G ∩ O|
|G| ∪ |O|

where | · | denotes set cardinality. Object-level Dice score is
then defined as

Do(Gi , Oi ) = 1

2

⎡

⎣
nO∑

j=1

ω j Dp(Gij , Oij )+
nG∑

j=1

ω̃ j Dp(G̃i j , Õi j )

⎤

⎦

where w j = |Oij |/∑nO
k=1 |Oik | and w̃ j = |G̃i j |/∑nG

k=1 |G̃ik |.
Gij is the ground-truth object that maximally overlaps with
the segmentation Oij , and Õi j is the segmentation which
maximally overlaps with the ground-truth object G̃i j . nG

and nO are the total number of ground-truth objects, and
segmented objects in the images Gi and Oi respectively.

3) Shape Dissimilarity: Shape dissimilarity of segmented
object and ground truth is measured as Hausdorff distance:

H (G,O) = max{sup
x∈G

inf
y∈O

‖x − y‖, sup
x∈O

inf
y∈G

‖x − y‖}

An object-level measure is then defined as

Ho(Gi , Oi ) = 1

2

⎡

⎣
nO∑

j=1

ω j Hp(Gij , Oij )+
nG∑

j=1

ω̃ j Hp(G̃i j , Õi j )

⎤

⎦

C. Experimental Settings

Structure predictors were applied at locations on a grid
with spacing of 8 pixels. We set the size of each patch, ui j ,
to 48 × 48 pixels, approximately 30 × 30μm2. We used k-
means to learn 48 × 48-pixel exemplars (Fig. 4). Parameter λ
in Eq. (3) was set to λ = 1; solvers in liblinear are known
to be acceptably insensitive to this parameter [24]. For all the
reported binary segmentation methods we used a relatively
high value of t = 0.8 (Eq. (1)) to encourage separation of
adjacent glands. We used data augmentation at training and
test time. Four instances of each classifier were trained, each
on a rotated version of the training data ({0°, 90°, 180°, 270°}).
At test time, 16 prediction maps were obtained for each
image (4 rotations of the test image × 4 classifiers). These
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TABLE II
THE PROPOSED METHOD (K = 100) VS. BINARY PREDICTION WITH DIFFERENT FEATURES. MEAN AND

MEDIAN VALUES OF THE EVALUATION MEASURES OVER THE IMAGES ARE REPORTED

Fig. 7. Results (mean values) using structure prediction with different features and different values of K. (a) F1 score. (b) Object-level Dice score.
(c) Object-level Hausdorff distance.

prediction maps were averaged to get the final prediction map
for that image (as in [32]). The threshold T in III-B was
automatically selected such that the selected T maximizes the
average of object level F1 and Dice scores on training data.

D. Evaluation
Results in Table II compare the proposed method with the

binary prediction method of Eq. (1). Structure prediction gave
better mean and median values than binary prediction in terms
of all measures. (Higher values are better for F1 and Dice
scores; lower values are better for Hausdorff distance.) Fig. 7
explores the effect of the number of structure exemplars, K .
When CNN features were used, performance peaked at around
K = 50 for test set B and at around K = 25 for test
set A. This is consistent with the fact that test set B has a
higher proportion of malignant cases; these contain irregularly
shaped glandular structures and so we would expect a more
complex representation of label structure to be of benefit.
When HC features are used either alone or in combination with
CNN features, it appears that still larger values of K can be
beneficial. Boxplots in Fig. 8 provide a comparison of structure
prediction (with different values of K ) and binary prediction,
in the case of combined HC and CNN features. Considering
the median values (red lines) these are consistent with Fig. 7.
These boxplots highlight that performance varies consider-
ably between images with a few particularly challenging
images being very poorly segmented. Fig. 10 shows examples
for which stucture prediction gave better segmentation than

binary prediction; adjacent gland boundaries are more reliably
separated by our method. Fig. 11 shows two cases for which
binary prediction gave better agreement with the annotated
ground-truth, although qualitative subjective comparison may
lead the reader to question whether it did in fact give better
segmentations. Fig. 12 shows two challenging examples that
resulted in structure predictions that were outliers.

Statistical tests were used to compare the eight methods
featured in Table II and Fig. 8 based on their performance
on the complete test set (Test A and Test B combined). For
each of the three measures (F1, Dice and Hausdorff) a non-
parametric Friedman test of differences was conducted and in
all three cases the Chi-square value was significant ( p < .01).
Post-hoc Nemenyi tests were then conducted. A critical dif-
ference (CD) value of 1.1739 was obtained (at significance
level 0.05); the difference in performance of two methods
can be considered statistically significant if the rank differ-
ence is more than the CD. Figure 9 reports the results as
CD diagrams [33]. Structure prediction was significantly better
than all of the binary predictors provided that CNN features
were used. Structure prediction with combined HC and CNN
features (HC+CNN) and K ∈ {50, 100} gave the best results;
the Dice scores obtained were significantly better than all
other methods, and the F1 and Haussdorff measures were
significantly better than structure prediction with HC features
alone and significantly better than binary prediction. The gains
over binary prediction were ∼0.11 (Test A) and ∼0.08 (Test B)
in terms of mean object-level F1 score, and ∼0.09 (Test A)
and ∼0.08 (Test B) in terms of mean object-level Dice score.
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Fig. 8. Box plots comparing structure prediction with binary prediction (with HC + CNN features). (a) F1 score for Test A. (b) Object-level Dice score
for Test A. (c) Object-level Hausdorff distance for Test A. (d) F1 score for Test B. (e) Object-level Dice score for Test B. (f) Object-level Hausdorff
distance for Test B.

Fig. 9. Nemenyi post-hoc test results. The horizontal scale numbered 1 to 6 shows the average rank of each method. Smaller ranks are better.
Red horizontal lines indicate no significant difference between the methods they connect. (a) Object-level F1 score. (b) Object-level Dice score.
(c) Object-level Hausdorff distance.

TABLE III
EFFECT OF POST-PROCESSING ON MEAN VALUES OF PERFORMANCE MEASURES.

(POST-PROCESSING STEPS ARE EXPLAINED IN SECTION III-B)

1) Effect of Post-Processing: The post-processing steps are
explained in Section III-B. Table III explores the effect of
post-processing on binary and structure prediction methods.
In both cases post-processing improved the overall scores.

2) Effect of r: Thus far, the value of r in Eq. (7) was set to
r = 1. Table IV reports performance for different values of
r on test set A and suggests that increasing r does not help.
Similar results were obtained on test set B. Larger values

of r sometimes resulted in overly-smoothed gland
boundaries.

E. Computational Cost
The network (Fig. 5) took 12 hours to converge on an

NVidia Tesla K40 GPU with 12GB memory.2 Training a

2NVidia Corporation donated the Tesla K40 GPU used for this research.
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Fig. 10. Four examples for which structure prediction (with HC+CNN features) gave better object-level detection scores than binary prediction (with
HC + CNN features). In each sub-figure, the first column shows the original image (top) and its ground truth (bottom), the second column shows
the probability map and segmentation obtained using binary prediction, and the last column shows the probability map and segmentation obtained
using the proposed method.

Fig. 11. Two examples for which binary prediction (with HC + CNN features) gave better object-level detection scores than local structure
prediction (with HC + CNN features). Sub-figure layout is similar to Fig. 10. (a) A mismatch with ground-truth was caused by torn glands at the
edge of the tissue sample which the annotator had chosen not to annotate. (b) A mismatch with ground-truth occurs at the lower-left of the image,
probably due to boundary effects.

TABLE IV
EFFECT OF VARYING r (HC + CNN FEATURES)

structured output classifier with 100,000 randomly sampled
features (HC+CNN) took around 2 hours on a core i7 machine
with 32 GB of RAM using Matlab 2015a. The average time to

extract the HC features for a test image of size 755×522 was
about 80s. The total time required to obtain the segmentation
from a test image by our unoptimized Matlab code was
300s. This time includes extracting all features (HC + CNN)
from 4 rotated versions of the image and obtaining the final
segmentation. However note that this could be improved by
processing the 4 rotated versions of an image in parallel.

F. Comparison With the State of the Art

We compare our method (structure classifier with HC +
CNN features and K = 100) with published methods for
gland segmentation. We use the performance measures and
ranking criteria from the GlaS challenge for consistency [2].
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TABLE V
COMPARISON WITH THE STATE OF THE ART

Fig. 12. Example predictions that correspond to outliers in Fig. 8 (using HC + CNN features). Upper-left: original image. Upper-right: ground truth
annotation. Lower-left: structure prediction. Lower-right: binary prediction.

Specifically, the ranking method is as follows. Methods are
first ranked based on each of the three criteria (IV-B) on each
of the two test sets, giving 6 rank scores for each method.
The sum of these 6 scores, termed the rank sum, is used as an
indicator of overall performance; lower rank sums are better.

Table V compares our method with other methods using
results reported in [2] and [23]. It also reports the ranks
and rank sums we computed from these measures.3 Our
method’s rank sum of 11 compares favorably with the
rank sum of 22 obtained by the winning method in the
GlaS contest (CUMedVision2 [21]) and with the rank
sum of 19 obtained by the recently proposed method of
Xu et al. [23].

V. DISCUSSION AND CONCLUSION

We have proposed a method for learning to segment object
instances that takes into account the local spatial structure of
labels by training classifiers using a set of structure exemplars
obtained via clustering. The encouraging results and the fact

3Our submission to the GlaS contest (denoted CVIP Dundee [2]) used a
seven-layer CNN based on AlexNet [34] trained on fixed patch size of 96×96.

that this approach is relatively straightforward to implement by
modifying existing classification pipelines lead us to believe
that our approach will be of interest to researchers working
not only on gland segmentation but on other similar problems
in biomedical image analysis.

In other experiments not reported here we tried alternatives
to k-means for learning the exemplars. Specifically, we tried
to jointly learn the exemplars in a discriminative way together
with the structure output classifiers rather than learning the
exemplars by unsupervised clustering. We did this in a joint
optimization framework that minimizes the overall reconstruc-
tion error between the binary ground truth maps and the
predictions reconstructed using the discriminatively learned
exemplars learned. However our initial results did not show
any advantage for this formulation.

The FCN approach typically employs heavy downsampling,
reducing the spatial resolution of intermediate feature maps.
The proposed pipeline utilises the multi-scale representations
of FCN and retains local spatial information. This scheme may
partially explain its relatively good performance.

The implementation used in this paper is too slow for
deployment to a clinical application processing whole-slide
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images. However, processing time could certainly be reduced.
HC feature extraction and structure prediction were imple-
mented in Matlab without optimising the code for speed
and without use of GPUs. The method lends itself straight-
forwardly to parallelisation across multiple cores or GPU
cards: the rotated versions of each image can be processed
in parallel and images themselves (extracted from whole slide
images) can be processed in parallel. Combined with rapid
improvements being made in hardware infrastructure, scaling
this kind of method to whole slide imaging should become
feasible without prohibitive cost in the not so distant future.

The GlaS challenge [2] provided an important dataset and
protocol for comparison of algorithms for glandular structure
segmentation, adding impetus to this aspect of digital pathol-
ogy image analysis. We obtained state of the art results using
the proposed method on the GlaS dataset. While useful as
an indicator of performance relative to other methods, rank-
based ‘league table’ comparisons are not always robust and
the statistical (or clinical) significance of differences in rank
is not always obvious. Methods such as bootstrapping could
be usefully employed in future for systematic comparison of
methods.

Results had higher variance on test set B than on test
set A. This is as expected given that test set B consists
of fewer images which are mostly from malignant tissue
with moderately or poorly differentiated adenocarcinoma. The
proposed method ranked first by all performance measures on
test set B indicating that it copes well with malignancy.

We followed the GlaS contest protocol and data set splits
in order to facilitate direct comparison with other published
methods. As acknowledged in [2], different visual fields from
the same slide can appear in different parts of the dataset
(i.e. training and test parts) because the data were not stratified
by patient. They were however stratified according to the
histologic grade and the visual field before splitting. Design
of any future gland segmentation dataset should ensure that no
data from the same patient can be present in both training and
test splits. Despite this limitation, GlaS results may in fact be
pessimistic because images have been subdivided into small
sub-images, introducing artificial image borders that cut many
gland structures into incomplete parts. This makes learning
to segment the structures artificially difficult. When applied
to whole-slide imaging, the difficulties arising from viewing
arbitrary 2D slices through 3D structures will remain but need
not be exacerbated by cropping the 2D slice.
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