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Abstract—We describe a pattern recognition system for classi-
fying immunofluorescence images of HEp-2 cells into six classes:
homogeneous, speckled, nucleolar, centromere, golgi, and nuclear
membrane. We use locality-constrained linear coding to encode
multiple local features and two-level cell pyramids to capture
spatial structure of cells. An ensemble of linear support vector
machines is used to classify each cell image. Leave-one-specimen-
out experiments on the I3A Contest Task 1 training data set
predicted a mean class accuracy of 80.25%.

I. INTRODUCTION AND RELATED WORK

The Anti-Nuclear Antibody (ANA) clinical pathology test
is commonly used to identify various autoimmune diseases.
A common method for identifying the presence of ANAs
is Indirect Immunofluorescence (IIF) on Human Epithelial
(HEp-2) cells due to its high sensitivity and the large range
of antigens that can be detected [1]. The IIF HEp-2 cell
patterns which are imaged need to be recognized for a more
detailed diagnosis. This is usually done by human observers
and is therefore subjective, relying heavily on the experience
of the observer. Partly due to large inter- and intra-observer
variability there is a strong demand for developing automated
procedures to identify IIF patterns that would improve test
repeatability and reliability.

In this work we focus on building an automated pattern
recognition system to classify IIF HEp-2 cell images into
predefined classes. Recent research has focussed on extracting
suitable image features from IIF images for classification.
Various morphological features and texture features such as
Local Binary Patterns (LBP) have been widely applied for
classification of segmented images of HEp-2 cells [2], [3],
[4], [5], [6]. Due to poor quality images, utilising low-level
features directly may be inefficient. Ersoy et al. [7] and
Li et al. [8] handle noisy features during classification via
boosting. In addition cell patterns such as Golgi (Fig. 1(f))
have some spatial information which is not captured well by
many traditional feature representations; to partly encode this
spatial information Wiliem et al. [1] used features computed
from inner and outer cell regions.

In this paper we develop a system for cell image clas-
sification which is based on multiple types of local feature
and which uses a two-level pyramid to retain some spatial
information.

II. METHOD

We describe a system to classify pre-segmented immunoflu-
orescence images of HEp-2 cells into six classes: homoge-

(a) Homogeneous (b) Speckled (c) Nucleolar

(d) Centromere (e) Nuclear Membrane (f) Golgi

Fig. 1: Sample images from I3A 2014 dataset

neous, speckled, nucleolar, centromere, golgi, and nuclear
membrane. Fig. 1 shows an example cell from each class.
Firstly, cell images were intensity-normalised. A set of local
features was then extracted and a feature encoding method
based on sparse coding was employed to aggregate the local
features into a cell image representation. A two-level cell pyra-
mid was used to capture spatial structure. Finally an ensemble
of one-vs-rest linear support vector machines (SVMs) was
trained to classify cell images into one of the six classes. The
following sections describe the proposed method in detail.

A. Preprocessing and Feature Extraction

Prior to feature extraction, each cell’s image was intensity-
normalised; specifically, a cell’s segmentation mask was di-
lated (using a 5× 5 structuring element) and image intensity
values within the dilated mask region were then linearly
rescaled so that 2% of pixels became saturated at low and
high intensities.

Four types of local feature were then extracted:
1) Multi-resolution local patterns (mLP): These are a

multi-resolution version of the local higher-order statistical
(LHS) patterns proposed by Sharma et al. [9] for texture
classification. LHS is a non-binarized version of the well-
known Local Binary Patterns method. It operates on a small
image neighbourhood of size 3 × 3. To capture information
from a larger neighbourhood and reduce noise effects, we
used the sampling patterns described by Maenpaa [10]. This



Fig. 2: The Gaussian filtered sampling points

is inspired by the spatial structure of receptive fields in the
human retina and has been widely adopted in recently devel-
oped visual features in computer vision such as FREAK [11],
BRISK [12], and DAISY [13]. Fig. 2 shows an example
sampling pattern where the local neighborhood is quantized
radially into three resolutions (radii), and at each resolution
a set of (N = 8) sampling regions (indicated as circles) are
considered. At each sampling point a Gaussian filter was
applied, integrating information from the filter’s region of
support. We call the combination of LHS and these sampling
patterns multi-resolution local patterns.

2) Root-SIFT (rSIFT): Root-SIFT is a variant of the widely
used SIFT descriptor that produces better performance than
SIFT on some image matching and retrieval tasks [14]. The
standard SIFT descriptor is a histogram representation of local
image derivatives and was originally designed to be used with
Euclidean distance. Using Euclidean distance to compare his-
tograms often yields inferior performance compared to other
measures such as χ2 or Hellinger for texture classification
and image categorization [14]. Therefore, standard SIFT was
modified in [14] to create Root-SIFT such that comparing
RootSIFT descriptors using Euclidean distance is equivalent
to using the Hellinger kernel to compare SIFT vectors.

3) Random projections (RP): Random projection, a sim-
ple yet powerful method for dimensionality reduction [15],
projects patch intensity vectors from the original patch-vector
space RD′

to a compressed space RD using randomly chosen
projection vectors. Such a scheme has been successfully
applied to texture image classification [16]. Let x be a D′-
dimensional patch vector and x̂ be its D-dimensional repre-
sentation in the compressed space. The RP method simply
maps these vectors using a D×D′ random projection matrix
R, such that:

x̂D×1 = RD×D′xD′×1 (1)

Each element in matrix R is sampled from a Gaussian distri-
bution with zero mean and unit variance. The key point of RP
is that when projecting the patch-vectors from the original
space to the compressed space their relative distances are
approximately preserved.

4) Intensity histograms (IH): We compute intensity his-
tograms from small image patches to capture the local intensity
information.

B. Feature encoding and image representation

Bag-of-words based feature encoding methods are widely
applied for image classification [17], [18]. However, sparse
coding which assigns each local feature to a set of bases
(dictionary elements) often shows improved performance [19],
[20]. Locality-constrained linear coding (LLC), an efficient
variant of sparse coding, utilizes the local linear property of
manifolds to project each descriptor into its local-coordinate
system [20].

Let X be a set of D-dimensional local descriptors extracted
from an image, i.e. X = [x1,x2, . . .xN ] ∈ RD×N . Given a
codebook (dictionary) with M entries, B = [b1,b2, . . .bM ] ∈
RD×M , locality-constrained linear coding uses the following
criterion to compute the codes C = [c1, c2 . . . cN ]:

argmin
C

N∑
i=1

‖xi −Bci‖2 + λ‖di � ci‖2

s.t 1T ci = 1, ∀i

(2)

where � denotes the element-wise multiplication and

di = exp

(
dist(xi, B)

σ

)
(3)

where dist(xi, B) = [||xi − b1||, . . . , ||xi − bM ||]T and σ is
a decay parameter. A fast approximation to LLC described
in [20] was used to speed up the encoding process. Specifi-
cally, instead of solving Eq. (2), the K(< D < M) nearest
neighbours of xi in B were considered as the local bases Bi

and a much smaller linear system (Eq. (4)) was solved to get
the local linear codes.

argmin
C

N∑
i=1

‖xi −Bici‖2

s.t 1T ci = 1, ∀i

(4)

We learned separate dictionaries of size M for each fea-
ture type. Max-pooling was used to aggregate the locality-
constrained linear codes. For each feature type, a 2-level
cell pyramid was used to capture spatial structure. At the
first level, sparse codes from the whole cell were pooled to
get a feature vector of size M . At the second level, feature
vectors were computed from the inner region and from the
border region of each cell respectively. These three feature
vectors were concatenated to give a 3M -vector. Finally, the
four feature types were concatenated to give a 12M -vector on
which classification was based.

C. Classification

Augmenting a classifier’s training set with rotated versions
of the images it contains may improve classification per-
formance but it also increases memory requirements in the
implementation we used. Instead we used an ensemble of one-
vs-rest, multi-class, linear SVMs; the ensemble consisted of
four SVMs, one trained on the original training set images,
and others trained on images after they were rotated through
90◦, 180◦, and 270◦ respectively. At test time, each test image



Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 81.8 15.00 0.76 0.20 2.04 0.20
Spec. 8.87 77.36 3.67 9.18 0.74 0.18
Nucl. 1.12 3.89 90.65 2.08 1.27 1.00
Cent. 0.47 10.87 2.85 85.66 0.04 0.11

NuMe. 6.30 2.04 1.40 0.27 88.04 1.95
Golgi. 5.66 3.73 20.72 2.35 9.53 58.01

TABLE I: Confusion matrix for leave-one-specimen-out experiments on I3A Task-1 dataset.

was rotated by 0◦, 90◦, 180◦, and 270◦, and each rotated
image was then given to the ensemble. This resulted in a set of
16 classification scores for each class. Scores were treated as
probabilities using Platt rescaling [21]. The final classification
decision was made by averaging these probabilistic scores and
selecting the highest scoring class.

III. EXPERIMENTS

A. Dataset

The I3A-2014 Task-1 dataset was collected between 2011
and 2013 at the Sullivan Nicolaides Pathology laboratory,
Australia. The training dataset contains 13,596 cell images
collected from 83 different specimens and assigned to the fol-
lowing classes: homogeneous, speckled, nucleolar, centromere,
golgi, and nuclear membrane (see Fig. 1). All the cell images
are monochrome and approximately 70 × 70 pixels in size.
We also made use of cell images segmented from the I3A-
2014 Task-2 dataset which contains images of specimens
from 7 different categories: homogeneous, speckled, nucleolar,
centromere, golgi, nuclear membrane and mitotic spindle; see
Fig. 3(a) and (c) for examples. (We did not use the mitotic
spindle images in the experiments reported in this paper). A
companion paper describes experiments classifying specimens
into seven classes [22].

B. Experimental setting

All features were densely extracted from patches of size
12 × 12, 16 × 16, and 20 × 20 pixels with a step-size of 2
pixels. The following parameter settings were used:
• mLP: a 3-resolution version with 8 sampling points

at each resolution was used as shown in Fig. 2. The
parameters of the Gaussian filters at each sampling point
were selected as in [10].

• RP: The dimension D′ of each linearised patch was
reduced to D = 300 whenever D′ > 300.

• IH: Local intensity histograms of 256 bins were used.
K-means was used for dictionary learning with 300, 000

randomly selected instances of each type of local feature. The
size of the dictionary, M , was empirically set to 1500. We
use the implementation of LLC from [20] with 10 nearest
neighbours (K = 10). The Liblinear package [23] was used
to build the ensemble classifiers. The Mean Class Accuracy
(MCA) was used as the evaluation metric. It is defined as

MCA =
1

K

K∑
k=1

CCRk (5)

where CCRk is the correct classification rate for class k and
K is the number of classes.

C. Experiment 1: Comparison of different features

We compared the performance obtained when using differ-
ent features. Leave-one-specimen-out experiments were car-
ried out using the specimen IDs provided to split the data into
training and validation sets. Since 83 different specimens were
available, we used images from 82 specimens for training in
each fold. Table II reports the MCA for each feature type as
well as for their combination. RP gave a slightly better MCA
than the other features. IH gave the worst result. Combining all
the features together resulted in a small increase to an MCA
of 80.25%. Table I reports the confusion matrix in this case.

Feature type. MCA(%)

rSIFT 78.00
mLP 78.63
IH 61.26
RP 79.60
All 80.25

TABLE II: MCA obtained when using different features. (All
= rSIFT+mLP+IH+RP).

D. Experiment 2: Evaluation on cell images extracted from
the Task-2 dataset

An automatic procedure was used to select cells from the
Task-2 dataset given the segmentation masks provided with
that dataset. Firstly, all disjoint regions were identified in
the segmentation mask images using connected component
analysis. Secondly, eccentricity values were calculated for each
connected component. Finally, low-eccentricity components
that could be bounded by an 80 × 80 square with which
no other component overlapped were selected. Approximately
5000 isolated cells were selected in this way. This is illustrated
in Fig. 3 where red bounding boxes denote cell images that
were extracted.

We trained an ensemble classifier using all the images from
the Task-1 training dataset and then tested it on the cell images
extracted from the Task-2 dataset. The results are reported in
Table III; an MCA of 85.5% was obtained.

IV. CONCLUSIONS

We developed a pattern recognition system to classify IIF
images of HEp-2 cells into six classes. Two training regimes



Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 64.36 29.68 1.70 0.10 3.51 0.63
Spec. 4.91 90.56 0.50 2.00 1.70 0.30
Nucl. 1.44 1.88 95.89 0.11 0.22 0.44
Cent. 0.32 9.78 6.15 83.62 0.00 0.10

NuMe. 3.70 2.16 0.30 0.00 92.28 1.54
Golgi. 0.10 1.66 3.64 0.72 7.38 86.47

TABLE III: Confusion matrix obtained when testing on images extracted from the I3A Task-2 dataset.

(a) A centromere specimen (b) The segmentation mask for (a)

(c) A speckled specimen (d) The segmentation mask for (c)

Fig. 3: Sample specimen images from I3A Task-2 dataset.
The red bounding boxes indicate the cell images which are
automatically extracted from these specimen images.

were used to generate submissions to the I3A Contest asso-
ciated with the ICPR 2014 Workshop. The first regime used
only data made available in the Task 1 training set; leave-
one-specimen-out experiments with this regime predicted a
MCA of 80.25%. This regime was also tested on about 5000
cell images automatically extracted from the Task 2 training
dataset, giving a MCA of 85.5%. The second regime trained
classifiers on a data set consisting of the Task 1 training set
together with these additional 5000 cell images.
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