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Abstract. In this paper we propose a method to segment brain tumor regions in digital pathology images. Multiple
local features as well as their local co-occurrences are used to characterise brain tissue regions. An SVM trained
on these representations is used to predict the label of new tissue regions, followed by a conditional random field
framework which can provide smoothed boundaries for predicted tumor regions. An average segmentation score of
0.66 was obtained based on a 5-fold cross validation.

1 Method

We propose a system to segment necrotic regions from normal regions in brain pathology images based on a sliding
window classification followed by a conditional random field (CRF) smoothing.

1.1 Sliding window classification

We consider the tumor region segmentation as a window-based classification problem. Firstly a set of grid points with
a step size of M are defined on each image, then windows of size W ×W centered at those grid points are extracted as
shown in Figure 1. In the following, we will introduce how to represent image windows, and then how to train a SVM
to classify new windows.

(a) An image. (b) mask. (c) grid points.

Fig. 1: The generation of grid points and windows: (a) an image. (b) its corresponding mask, where black region
indicates the presence of necrotic. (c) grid points with a step size of M are defined on the images (blue circles) and
image windows of size W ×W centered at those grid points are extracted for processing (red square indicates an
example window), and patches of size P×P inside each windows are considered for feature extraction (blue square).

Feature extraction: Each window is preprocessed before feature extraction, i.e., the pixel values in each channel of
HSV color space are linearly rescaled so that 1% of pixels became saturated at low and high values respectively. Then
image patches of size P×P (P << W ), with an overlap of 2

3 P pixels in both horizontal and vertical directions are
extracted inside each window. The following four types of local features are used to describe each image patch:

1. Multi-resolution local patterns (mLP): a 3-resolution version of non-binarized local binary pattern feature, recently
proposed for Human Epithelial cell and specimen classification in [8,9]. This feature is extracted from each of the
HSV color channel and concatenated to get a feature representation.
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2. Root-SIFT (rSIFT): a variant of widely used SIFT feature proposed in [10] produces better performance than SIFT
for image matching and retrieval tasks. As for mLP, rSIFT is extracted from each color channel and concatenated
to get a representation.

3. Random Projections (RP): a simple method for dimensionality reduction, projecting each linearised raw patch
vector of size D′ = P×P×3 (3 indicates the HSV color channels) to a much compressed space of dimension D
(D << D′) [11]. RP are successfully applied for texture image classification in various applications, e.g. [8,9,11].

4. Intensity histograms (IH): a 256 dimensional intensity histogram feature extracted from each of the HSV color
channels and then concatenated as a feature vector.

Since the features (rSIFT and IH) are extracted from different color channels, the final dimensionality will be large;
therefore PCA was applied on rSIFT and IH features to reduce their dimensionality to 300.

Feature encoding: Bag-of-words (BoW), a widely-used feature encoding method, assumes that the local features
extracted from images are independent of each other, and only counts the frequency of each visual word appearing in
each image. Recently, an inter-cluster feature encoding method was proposed to additionally capture the co-occurrence
of “visual words” within intermediate-scale image regions (e.g., with size of 64× 64 pixels), and showed improved
classification performance over the BoW method in some medical domains [12].

Here we followed the approach proposed in [12] to represent each image window. For each feature type, we build
two dictionaries, one with a size of 1000 visual words to capture the statistics of local features and the other one
being a rather small dictionary of size 100 to capture the intermediate-scale information. Both dictionaries are built
based on 300,000 randomly sampled local features. As proposed in [12], we use 20% of cluster (i.e., word) pairs from
the smaller dictionary to capture the intermediate-scale features. Finally each image window is represented using this
representation, leading to a feature dimensionality of 1950 for each feature type.

Classification: A SVM classifier can be trained to categorize each image window into either the necrotic or the normal
class. To train the SVM, each image window is represented based on the above feature encoding method, and the class
label of each image window was generated based on the ground-truth segmentation masks, i.e., if the percent of the
number of pixels being necrotic within the image window is larger than a threshold (e.g., 75%), the image window
will be considered necrotic. Otherwise, the window is considered normal.

Since SVM does not provide probabilistic outputs, we use the Platt scaling [13] to convert the SVM outputs
into probability values. The Platt calibration method [13] maps any SVM output f (x) with the range [−∞,+∞] to a
posterior probability P with the range [0,1] by a sigmoid function, i.e.,

P(y = 1| f (x)) = 1
1+ expa f (x)+b

(1)

where P(·) represents the probability of the image window (represented by its feature x) being positive. We use a 3-fold
cross validation on the training image set to generate a training data for sigmoid learning as suggested by Platt [13].

After a SVM is trained, it can be used to segment a new image. More specifically, image windows are extracted
and then individually classified by the SVM. Since every image pixel will be covered by multiple image windows, the
probability of each pixel being necrotic is obtained by averaging the probabilities of these relevant image windows
being necrotic, therefore generating a final probability map of the image (see Figure 2 for an example).

1.2 Refinements with CRF

To obtain the final segmentation with smooth boundaries and to discard noisy isolated predictions, A CRF framework
was applied as in [14]. CRF provides a natural way to incorporate pair-wise constraints, enforcing adjacent regions
belonging to the same class. Let G(S,E) be the adjacency graph of pixels, with each pixel corresponding to a node
s ∈ S, and every edge (si,s j) ∈ E indicating the neighborhood relationship between two pixels si and s j. Let P(c|G;w)
be the conditional probability of the set of class label assignments c to all pixels given the adjacency graph G(S,E)
and a weight w. Then CRF minimizes an energy of the form [14]

− log(P(c|G;w)) = ∑
si∈S

ψ(ci|si)+w ∑
(si,s j)∈E

Φ(ci,c j|si,s j) (2)
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We directly use the probability outputs P(ci = 1|si) from the probability map provided by SVM to define the node (ψ)
and edge potentials (Φ):

ψ(ci|si) =−log(P(ci|si)) (3)

Φ(ci,c j|si,s j) =
|ci−c j |

1+|P(ci|si)−P(c j |s j)| (4)

where the weight w in Eq. 2 represents the trade-off between the spatial regularization (edge-potential) and the confi-
dence in the classification (node-potential). w is learned based on the cross-validation in the training set. We use the
public library for graph-optimization [15–17] for the label inference.

2 Experiments

We evaluate the method using the four different features and their combinations, with and without CRF based refine-
ment. The training dataset provided by the MICCAI 2014 digital pathology challenge contains 35 images with varying
sizes, ranging from 500 to 5000 pixels in each dimensions. As test set is currently not released, we evaluated the pro-
posed method based on a 5-fold cross validation. The following segmentation score r is used to measure the accuracy
of the proposed method in segmentation,

r =
A∩B
A∪B

, (5)

where A and B are the ground-truth and the predicted segmentations respectively for any image. For the necrotic images
(containing both necrotic and normal regions), r is the ratio between the number of necrotic pixels which are correctly
predicted by the method and the number of pixels which are labelled as necrotic in either the predicted segmentation
or the ground truth. For the non-necrotic images (only containing normal regions), r is the ratio between the number
of non-necrotic pixels which are correctly predicted by the method and the number of pixels which are labelled as
non-necrotic in either the predicted segmentation or ground truth. We report the segmentation score by averaging the
scores over all the images.

The step size for grid points (M) and the patch size (P) for local feature extraction are fixed to 75 pixels and 24
pixels respectively. We use the public library liblinear [18] for training the SVM. In the first two experiments CRF
is not applied. The final segmentation is obtained by thresholding the averaged probability map of an image. The
threshold was learned based on maximizing the segmentation score on the training data.

2.1 Performance of different features

This experiment evaluates the performance of different features and their combinations. mLP gives better perfor-
mance compared to other individual features, and when it was combined with rSIFT, the combination (rSIFT+mLP)
outperforms other individual features and combinations (Table 2). Local intensity histogram features perform worse
compared to all other features. Therefore in all the following experiments, the combined features rSIFT+mLP are used.
The window size in this experiment was fixed to 200.

feature dimensionality score
mLP 1990 0.6207
rSIFT 1990 0.5749

RP 1990 0.5853
IH 1990 0.4968

mLP + rSIFT 3980 0.6600
rSIFT + RP 3980 0.6247
mLP + RP 3980 0.6099

mLP + rSIFT + RP 5970 0.6515

Table 1: Performance of different features and their combi-
nations.

window size score
100 0.5702
200 0.6600
300 0.6597
400 0.6303

200 + 300 0.6660
100 + 200 + 300 + 400 0.6483

Table 2: Effect of window sizes.
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2.2 The effect of window size

In this experiment we report the effect of different window sizes W ×W, W ∈ {100,200,300,400} and their combi-
nations. The window size 200 gives better performance compared to other windows. When combining (averaging) the
probability maps of windows of sizes 200 and 300, the segmentation score increases slightly. More specifically, two
different SVM classifiers are learned, one for each window size. Then the probability maps obtained from window
sizes 200 and 300 are averaged and compared with a learned threshold to obtain the final segmentation. This threshold
was learned by maximizing the segmentation score on the training set as explained above.

(a) image (b) ground truth (c) SVM proba-
bility

(d) segmentation
using learned
threshold

(e) segmentation
using CRF

Fig. 2: Examplar segmentation results. (a) input images. (b) ground-truth segmentation. (c) the probability map based
on SVM outputs. (d) the segmentation obtained by thresholding (c) with a learned threshold. (e) the segmentation
obtained by CRF using (c) as the input. (red indicates the presence of necrotic, and blue indicates the presence of
non-necrotic.)

2.3 The effect of CRF refinement

This experiment evaluates the performance of CRF. rSIFT+mLP features with window sizes of 200 and 300 pixels
were used. The probability maps obtained from 200 and 300 window sizes are averaged and used as the input to
the CRF framework. Figure 2 shows some outputs of the learned threshold based segmentation and the CRF based
segmentation. As expected, CRF smooths the boundaries and removes most of the noisy predictions. But in this
experiment we were unable to get any performance improvement in terms of the averaged segmentation score, probably
because the performance of CRF completely relies on the SVM predictions. Better performance may be obtained by
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adding raw features in addition to the SVM probabilities, which is currently explored for the 2nd phase of the MICCAI
Challenge.

3 Conclusions

In conclusion, we proposed a region-based classification framework for the segmentation Challenge, based on recently
developed local feature encoding and the conditional random field framework. Decent segmentation result has been
obtained in average. Currently, we are still exploring to improve the performance by adding visual features into the
CRF framework, and by employing more discriminative local features for the SVM training, particularly based on the
deep learning approach.
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