

Classification of Surface Defects using Semi-Supervised Deep Learning

Introduction

In manufacturing, quality control is a process that ensures customers receive defect-free products. Defect identification is commonly performed manually by trained workers by visual inspection. But it is subjective, unreliable and time consuming. To overcome this, vision based Automatic surface inspection (ASI) methods are proposed, as they are fast, highly accurate and significantly reduces labor intensity. In this work, a Convolutional Neural Network based semisupervised learning approach is proposed for the recognition of surface defects as it requires little amount of labeled data compared to fully supervised approaches.

Our contribution of this work are:

- We propose a semi-supervised deep learning approach for the classification of surface defects.
- We propose a sample weighting strategy based on how well each unlabeled sample is predicted.

Our proposed approach achieves State-of-the-art results on three public datasets with limited amount of training data.

Comparison of funry supervised (FS) vs. semi-supervised (SS) approaches on different datasets										
Dataset	Backbone	FS/SS	Overall accuracy (%) for different number of training samples per cla							
			5% 10% 25%		50%	100%				
NEU	Resnet-10	FS	91.69 ± 1.52	97.00 ± 0.09	99.45 ± 0.26	99.67 ± 0.17	99.86 ± 0.11			
		SS	98.34 ± 0.36	99.50 ± 0.12	99.75 ± 0:14	99.82 ± 0.05	-			
Kolektor SDD	Resnet-10	FS	79.94 ± 4.37	85.59 ± 1.13	100 ± 0.00	100 ± 0.00	100 ± 0.00			
		SS	$\textbf{85.10} \pm \textbf{2.24}$	88.60 ± 0.69	100 ± 0.00	100 ± 0.00	-			
Textures	Resnet-18	FS	86.71 ± 0.45	93.58 ± 0.38	96.62 ± 0.32	99.09 ± 0.05	99.52 ± 0.13			
		SS	89.52 ± 0.48	95.33 ± 0.28	$\textbf{98.60} \pm \textbf{0.20}$	99.50 ± 0.01	-			

In this experiment, we randomly select s% of images (s is varied from 5% to 100%). FS Approach: we used s% of labeled samples only from the training set for training. SS Approach: In addition to the s% of labeled samples, the remaining images from the training set are used as unlabeled samples for training.

Semi-supervised learning gives significant improvements over fully supervised learning on all the three datasets.

- On the NEU dataset, our approach achieves the state-of-the-art results with 10% of labeled training data.
- On the KolektorSDD dataset, our approach achieves the state-of-the-art results with 25% of labeled training data.
- In addition, on the **Surface Textures dataset**, we achieve the state-of-the-art results with only 50% of labeled training data.

Conclusion

- This work proposed a simple and efficient semi-supervised deep learning approach for the classification of surface defects.
- Our approach is not specific to a particular CNN architecture, and any CNN architecture can be easily incorporated.
- The proposed semi-supervised learning approach performs better than its fully-supervised version.
- Our approach achieves the state-of-the-art results on all of these datasets with relatively low amount of labeled training data compared to other approaches.

Commentant of fully announced (FC) and anni announced (CC) annual and deferrent deterret

M. Mayuravaani and S. Manivannan Department of Computer Science, Faculty of Science, University of Jaffna mmayuravaani@gmail.com, siyam@univ.jfn.ac.lk

Proposed Methodology

Loss Function No. of classes Unlabeled data Labeled data $\mathcal{L} = -\sum_{i} \left\| \sum_{i} y_{ic} \log p_{ic} + \sum_{i} w_{i} \hat{y}_{ic} \log p_{ic} \right\|$ $c=1 \ \lfloor i \in \mathcal{D}_L$ $i \in \mathcal{D}_I$ Pseudo-label of One-hot representation of image image *i* belonging to class *c* Weight for image *i* There are multiple ways this weight can be determined.

 p_{ic} - Probability of image *i* belonging to the class *c*.

The proposed cross entropy based loss function is minimized to learn the parameters of the CNN. This loss function contains two terms, the first one is based on the labeled data (D_{I}) , and the second one is based on the unlabeled data (D_{II}) .

Weighting Schemes

- Equal weights for all the unlabeled images (*We*) confidence in prediction.
- probability (Ws)
- Soft-weighting based on probability (*Wp*) • Problem: Soft weights based on the probabilities.
- Weighting based on a margin criteria (*Wm*) (Proposed)

$$w_i = \frac{1}{1 + e^{-\beta}}$$

where,
$$d = \hat{p}_i - \hat{p}'_i$$

Experiments and Results

Comparison of the weighting schemes on the NEU dataset

	input ison of the weig	Sinning Berley		uuubet				ne ur cuppi suche,			
Weighting Schemes	s N	Vs	Wp	Wm 98:34 ± 0:36	Methods	Overall accuracy (%) for different number of training samples per class					
Accuracy	97:10) ± 0.84	$97{:}50\pm0{:}78$			9 (5%)	18 (10%)	45 (25%)	90 (50%)	180 (100%)	
					Supervised learning			·			
Comparison	with the state-of-the-a	art approacl	hes on the Kolek	tor SDD dataset	Zhou et. al.[4]	-	-	78.09	80.00	86.64	
Mothod		AP for diffe	rent number of po	sitive training samples	Li et. al. [5]	-	-	82.81	85.39	95.00	
Aethod		5	10	33	Ren et. al.[6]	-	-	_	90.88	92.04	
$Segmentation \ base$	ed approaches which us	e both image	and pixel level la	bels for training							
akob et. al. [11]		96.71	99.31	100	He et. al. (CAE-SGAN) [7]	-	-	-	-	98.96	
Tabernik et. al. [1	2]	95.80	98.80	99.00	He et. al. (cDCGAN) [8]	-	-	-	-	99.56	
Cognex ViDi (com	mercial software) [12]	89.20	95.60	99.00	We not all (\mathbf{MMCCN}) [0]					00 72	
mage level labels	only				wang et. al. (MMGCN) [9]	-	-	-	-	99.72	
Ku et. al. [13]		-	98.0	99.50	Ours	91.69 ± 1.52	97.00 ± 0.09	99.45 ± 0.26	99.67 ± 0.17	99.86 ± 0.11	
Durs		88.60 ± 0.69	100 ± 0.00	100 ± 0.00	Semi-supervised learning						
					He et. al. (CAE-SGAN) [7]	-	-	85.83	94.87	-	
Comparison wi	ith the state-of-the-ar	rt approache	es on the Surface	Textures dataset	He et al. (cDCGAN) [8]	-	-	89.58	96.06	-	
(ath a d	Accuracy for different	; percentage (of labeled training	images	Gao et. al. (PLCNN) [10]	-	-	90.7*	-	-	
nethod -	25%		50%	100%	Wang et. al. (MMGCN) [9]	-	-	98.06	98.75	-	
Iuang et. al. [14]	-		-	99.33							
Durs	98.60 ± 0.20	99.	50 ± 0.01	99.52 ± 0.13	Ours	98.54 ± 0.36	99.50 ± 0.12	99.75 ± 0.14	99.82 ± 0.05	-	
						* Note: PLCNN[1	0] is trained with 50) samples per class			

00		88									
Weighting Schemes		Ws	Wp	Wm		Overall accuracy (%) for different number of training samples per class					
Accuracy	97:10	0 ± 0.84	$97{:}50\pm0{:}78$	98:34 ± 0:36	Methods -	9 (5%)	18 (10%)	45 (25%)	90 (50%)	180 (100%)	
					Supervised learning						
Comparison	with the state-of-the-	art approacl	hes on the Kolek	tor SDD dataset	Zhou et. al.[4]	-	-	78.09	80.00	86.64	
Mathad		AP for diffe	rent number of po	sitive training samples	Li et. al. [5]	-	-	82.81	85.39	95.00	
Method		5	10	33	Ren et. al.[6]	-	_	_	90.88	92.04	
Segmentation base	ed approaches which us	se both image	and pixel level la	bels for training							
Jakob et. al. [11]		96.71	99.31	100	He et. al. (CAE-SGAN) [7]	-	-	-	-	98.96	
Tabernik et. al. [1	2]	95.80	98.80	99.00	He et. al. (cDCGAN) [8]	-	-	-	-	99.56	
Cognex ViDi (com	mercial software) [12]	89.20	95.60	99.00	$\mathbf{W}_{\alpha\alpha} = \alpha + \alpha + (\mathbf{M}_{\alpha} + \mathbf{M}_{\alpha} +$					00 72	
Image level labels only					wang et. al. (MMGCN) [9]	-	-	-	-	99.72	
Xu et. al. [13]		-	98.0	99.50	Ours	91.69 ± 1.52	$\textbf{97.00} \pm \textbf{0.09}$	99.45 ± 0.26	99.67 ± 0.17	99.86 ± 0.11	
Ours		88.60 ± 0.69	100 ± 0.00	100 ± 0.00	Semi-supervised learning						
					He et. al. (CAE-SGAN) [7]	-	-	85.83	94.87	-	
Comparison w	ith the state-of-the-a	rt approache	es on the Surface	Textures dataset	He et al. (cDCGAN) [8]	-	-	89.58	96.06	-	
Mathad	Accuracy for different	t percentage o	of labeled training	images	Gao et. al. (PLCNN) [10]	-	-	90.7*	-	-	
Method	25%		50%	100%	Wang et. al. (MMGCN) [9]	-	-	98.06	98.75	-	
Huang et. al. [14]	-		-	99.33							
Ours	98.60 ± 0.20	99 .5	50 ± 0.01	99.52 ± 0.13	Ours	98.54 ± 0.36	99.50 ± 0.12	99.75 ± 0.14	99.82 ± 0.05	-	
						* Note: PLCNN[1	0] is trained with 50	0 samples per class			

		88				· · · · · · · · · · · · · · · · · · ·					
Weighting Schemes	s V	Ws	Wp	Wm	Matha da	Overall accuracy (%) for different number of training samples per class					
Accuracy	97:10	0 ± 0.84	97:50 ± 0:78	98:34 ± 0:36	Methods	9 (5%)	18 (10%)	45 (25%)	90 (50%)	180 (100%)	
					Supervised learning		· · ·				
Comparison	with the state-of-the-a	art approacl	hes on the Kolek	tor SDD dataset	Zhou et. al.[4]	-	-	78.09	80.00	86.64	
Mathad		AP for different number of positive training samples			Li et. al. [5]	-	-	82.81	85.39	95.00	
Method		5	10	33	Ren et. al.[6]	-	-	-	90.88	92.04	
Segmentation base	ed approaches which us	e both image	and pixel level la	bels for training							
Jakob et. al. [11]		96.71	99.31	100	He et. al. (CAE-SGAN) [7]	-	-	-	-	98.96	
Tabernik et. al. [1	[2]	95.80	98.80	99.00	He et. al. (cDCGAN) [8]	-	-	-	-	99.56	
Cognex ViDi (com	nmercial software) [12]	89.20	95.60	99.00	Wang at al (\mathbf{MMCCN}) [0]					00 72	
Image level labels	only				wang et. al. (MMGCN) [9]	-	-	-	-	99.12	
Xu et. al. [13]		-	98.0	99.50	Ours	91.69 ± 1.52	$\textbf{97.00} \pm \textbf{0.09}$	99.45 ± 0.26	99.67 ± 0.17	99.86 ± 0.11	
Ours		88.60 ± 0.69	100 ± 0.00	100 ± 0.00	Semi-supervised learning						
					He et. al. (CAE-SGAN) [7]	-	-	85.83	94.87	_	
Comparison w	ith the state-of-the-ar	rt approache	es on the Surface	Textures dataset	He et al. (cDCGAN) [8]	-	-	89.58	96.06	_	
	Accuracy for different	t percentage o	of labeled training	g images	Gao et. al. (PLCNN) [10]	-	-	90.7*	-	_	
Method	25%		50%	100%	Wang et. al. (MMGCN) [9]	-	-	98.06	98.75	_	
Huang et. al. [14]	-		-	99.33							
Ours	98.60 ± 0.20	99.	50 ± 0.01	99.52 ± 0.13	Ours	98.54 ± 0.36	99.50 ± 0.12	99.75 ± 0.14	99.82 ± 0.05	-	
						* Note: PLCNN[10] is trained with 50 samples per class					

[1] K. Song, Y. Yan, A noise robust method based on completed local binarypatterns for hot-rolled steel strip surface defects, Applied Surface Science 285 (2013) 858-864. [2] D. Tabernik, S. Sela, J. Skvar^{*}c, D. Sko^{*}caj, Segmentation-based deep-learning approach for surface-defect detection, Journal of Intelligent Manufacturing 31 (2019). [3] Y. Huang, C. Qiu, X. Wang, S. Wang, K. Yuan, A compact convolutional neural network for surface defect inspection, Sensors 20 (7) (2020) 1974. [4] S. Zhou, Y. Chen, D. Zhang, J. Xie, Y. Zhou, Classification of surface defects on steel sheet using convolutional neural networks, Materiali in tehnologije 51 (2017) 123 - 131. [5] L. Yi, G. Li, M. Jiang, An end-to-end steel strip surface defects recognition system based on convolutional neural networks, Steel Research International 88 (2016). [6] R. Ren, T. Hung, K. C. Tan, A generic deep-learning-based approach for automated surface inspection, IEEE Transactions on Cybernetics 48 (3) (2018) 929 - 940. [7] H. Di, X. Ke, Z. Peng, Z. Dongdong, Surface defect classification of steels with a new semi-supervised learning method, Optics and Lasers in Engineering 117 (2019) 40 - 48. [8] Y. He, K. Song, H. Dong, Y. Yan, Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network, Optics and Lasers in Engineering 122 (2019) 294 - 302. [9] Y. Wang, L. Gao, Y. Gao, X. Li, A new graph-based semi-supervised method for surface defect classification, Robotics and Computer-Integrated Manufacturing 68 (2021) [10] Y. Gao, L. Gao, X. Li, X. Yan, A semi-supervised convolutional neural network-based method for steel surface defect recognition, Robotics and Computer-Integrated Manufacturing 61 (2020) 101825. [11] J. Bozic, D. Tabernik, D. Skocaj, End-to-end training of a two-stage neural network for defect detection (2020). arXiv:2007.07676. [12] D. Tabernik, S. Sela, J. Skvar^c, D. Sko^caj, Segmentation-based deep- learning approach for surface-defect detection, Journal of Intelligent Manufacturing 31 (2019). [13] L. Xu, S. Lv, Y. Deng, X. Li, A weakly supervised surface defect detection based on convolutional neural network, IEEE Access 8 (2020) 42285. [14] Y. Huang, C. Qiu, X. Wang, S. Wang, K. Yuan, A compact convolutional neural network for surface defect inspection, Sensors 20 (7) (2020) 1974.

• Selection of a subset of unlabeled images based on prediction

• Problem: All the samples above a threshold are only considered.

- softness of the weight - maximum probability for image *i* \hat{p}'_{i} - second maximum probability for image i

• Soft weights based on how well each sample is classified.

References

Comparison with the state-of-the-art approaches on the NEU dataset

Datasets