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In manufacturing, quality control is a process that ensures customers receive 

defect-free products.  Defect identification is commonly performed manually by 

trained workers by visual inspection. But it is subjective, unreliable and time 

consuming. To overcome this, vision based Automatic surface inspection (ASI) 

methods are proposed, as they are fast, highly accurate and significantly reduces 

labor intensity. In this work, a Convolutional Neural Network based semi-

supervised learning approach is proposed for the recognition of surface defects  

as it requires little amount of labeled data compared to fully supervised 

approaches. 
 

Our contribution of this work are: 

• We propose a semi-supervised deep learning approach for the classification of 

surface defects. 

• We propose a sample weighting strategy based on how well each unlabeled 

sample is predicted. 

 

Our proposed approach achieves State-of-the-art results on three public datasets 

with limited amount of training data. 

 

No. of classes 

Labeled data Unlabeled data 

One-hot representation of 

image i belonging to class c 

Pseudo-label of 

image i 

Weight for image i 

1. Northeastern University dataset 

(NEU) [1] 

– six steel surface defects, 1800 

images in total  

 

2. KolektorSDD dataset [2] 

– 399 images of plastic electronics 

commutators 

– Defective vs non-defective 

 

3. Surface textures dataset [3] 

– 8,674 images from 64 classes 
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There are multiple ways this weight can be determined. 

Loss Function Weighting Schemes 

 

• Equal weights for all the unlabeled images (We) 
• Problem: All the samples are considered, regardless of their 

confidence in prediction. 

 

• Selection of a subset of unlabeled images based on prediction 

probability (Ws)  
• Problem: All the samples above a threshold are only considered. 

 

• Soft-weighting based on probability (Wp)  
• Problem: Soft weights based on the probabilities. 

 

• Weighting based on a margin criteria (Wm) (Proposed) 

 

 

 

 

• Soft weights based on how well each sample is classified.  

Comparison of fully supervised (FS) vs. semi-supervised (SS) approaches on different datasets 

 

Dataset 
Backbone 

 

FS/SS 

 

Overall accuracy (%) for different number of training samples per class 

5% 10% 25% 50% 100% 

NEU Resnet-10 
FS 91.69 ± 1.52  97.00 ± 0.09  99.45 ± 0.26  99.67 ± 0.17  99.86 ± 0.11 

SS 98.34 ± 0.36  99.50 ± 0.12  99.75 ± 0:14  99.82 ± 0.05 - 

Kolektor 

SDD 
Resnet-10 

FS 79.94 ± 4.37 85.59 ± 1.13 100 ± 0.00 100 ± 0.00 100 ± 0.00 

SS 85.10 ± 2.24 88.60 ± 0.69 100 ± 0.00 100 ± 0.00 - 

Textures Resnet-18 
FS 86.71 ± 0.45 93.58 ± 0.38 96.62 ± 0.32 99.09 ± 0.05 99.52 ± 0.13 

SS 89.52 ± 0.48 95.33 ± 0.28 98.60 ± 0.20 99.50 ± 0.01 - 

Comparison of the  weighting  schemes on the NEU dataset 

 

Semi-supervised learning gives significant improvements over fully supervised learning on all the 

three datasets. 

• On the NEU dataset, our approach achieves the state-of-the-art results with 10% of labeled 

training data. 

• On the KolektorSDD dataset, our approach achieves the state-of-the-art results with 25% of 

labeled training data. 

• In addition, on the Surface Textures dataset, we achieve the state-of-the-art results with only 

50% of labeled training data. 

• This work proposed a simple and efficient semi-supervised deep learning approach for the classification of surface defects. 

• Our approach is not specific to a particular CNN architecture, and any CNN architecture can be easily incorporated. 

• The proposed semi-supervised learning approach performs better than its fully-supervised version. 

• Our approach achieves the state-of-the-art results on all of these datasets with relatively low amount of labeled training data 

compared to other approaches.  
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NEU dataset 

Comparison with the state-of-the-art approaches on the NEU dataset 

 

Methods 
Overall accuracy (%) for different number of training samples per class  

9 (5%) 18 (10%) 45 (25%) 90 (50%) 180 (100%) 

Supervised learning 

Zhou et. al.[4]  - - 78.09 80.00 86.64 

Li et. al. [5] - - 82.81 85.39 95.00 

Ren et. al.[6]  - - - 90.88 92.04 

He et. al. (CAE-SGAN) [7] - - - - 98.96 

He et. al. (cDCGAN) [8] - - - - 99.56 

Wang et. al. (MMGCN) [9] - - - - 99.72 

Ours 91.69 ± 1.52  97.00 ± 0.09 99.45 ± 0.26  99.67 ± 0.17 99.86 ± 0:11 

Semi-supervised learning  

He et. al. (CAE-SGAN) [7] - - 85.83  94.87  - 

He et al. (cDCGAN) [8] - - 89.58  96.06  - 

Gao et. al. (PLCNN) [10] - - 90.7∗  - - 

Wang et. al. (MMGCN) [9] - - 98.06 98.75 - 

Ours  98.54 ± 0.36  99.50 ± 0.12  99.75 ± 0.14 99.82 ± 0.05 - 

 * Note: PLCNN[10] is trained with 50 samples per class 

wi 

In this experiment, we randomly select s% of images ( s is varied from 5% to 100%). 

FS Approach: we used s% of labeled samples only from the training set for training. 

SS Approach: In addition to the s% of labeled samples, the remaining images from the training set 

  are used as unlabeled samples for training. 

        pic - Probability of image i belonging to the class c.  

 

The proposed cross entropy based loss function is minimized 

to learn the parameters of the CNN. This loss function 

contains two terms, the first one is based on the labeled data 

(DL), and the second one is based on the unlabeled data (DU).  

Weighting Schemes Ws Wp Wm 

Accuracy 97:10 ± 0.84 97:50 ± 0:78 98:34 ± 0:36 

Comparison with the state-of-the-art approaches on the Kolektor SDD dataset 

Comparison with the state-of-the-art approaches on the Surface Textures dataset 

[11] 

[12] 
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[14] 

β   - softness of the weight  

t    - soft threshold parameter.  

𝑝 𝑖  -  maximum probability for image i 

𝑝 ′𝑖 -  second maximum probability for image i 
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