
Minimizing Application Downtime During Upgrades Of Microservices coupled With Database Logic 

Operated In Kubernetes.

Cloud computing has had such an impact on the IT industry

that the majority of IT infrastructure is now shifting to the

cloud. The success of cloud environments is due to the

resources they enable for applications to grow easily and for

free. The maintenance and updating of an application is

critical. Every application must be updated on a regular

basis.

When upgrading services deployed in Kubernetes settings,

where the services are strongly tied with database objects, a

strategy to minimize application downtime is required. In

this case, the Kubernetes operator pattern is explored and

used in conjunction with proxy servers and schema

converters to alleviate the reshaping of service that occurs

after a typical application upgrade.

This research intends to design, implement, and evaluate an

operator in order to maintain automated updates minimizing

downtime and to make the system available to users at all

times.

.

Iterative Keypoint Selection (IKS)

References

Operator Deployment 

& Application Setup 
Proposed Methodology

A.G.D.D.U Gunawardhana , E. Y. A. Charles & Isuru Siriwardhana (Independent Researcher)

Department of Computer Science, University of Jaffna, Sri Lanka

gunawardhanaudara@gmail.com

Conclusion

Methodology

References

Reference

considered in the development system. Software

quality is measured under three methods.

1. Manual process. Before implementing the

update, remove the current deploy version in

the cluster. Next Update the database and then

new version deploy in the cluster.

2. Manually update database and Rolling update

the application. Here also use the manual

update process. First update the database and

then update the application pod according to

the rolling update concept

3. Keep automatic updates using operators and

handle the failure of the database and service

layer.

Create new tables, rename columns, drop columns,

drop tables, add columns, edit data types, and handle

any database changes when upgrading the database.

The aforementioned method downtime is depicted in

a pie chart(Figure3).

Update automatically tightly coupled with database and application service minimizing downtime using operator. Without

user interruption can perform the update smoothly by the operator. This system was able to provide higher flexibility for

developers to update their application in a cloud environment minimizing downtime.

[1] H. Saito, H.-C. C. Lee, and C.-Y. Wu, DevOps with Kubernetes accelerating software delivery with container

orchestrators. Birmingham, UK: Packt Publishing, 2017.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” p. 7.

[3] Tomas Cerny,Michael J. Donahoo,Michal Trnka, Contextual Understanding of Microservice Architecture:Current and

Future Directions

[4] “Kubernetes Cluster Architecture” kubernetes.io. [Online]. https://kubernetes.io/docs/concepts/architecture .

[5] “Operator SDK” operatorframework.io [Online]. https://sdk.operatorframework.io/docs/building-operators/golang/

[6] Michael de Jong , “Zero-Downtime SQL Database Schema Evolution for Continuous Deployment”

[7] David Jaramillo,Duy V Nguyen,Robert Smart, “Leveraging microservices architecture by using Docker technology”

Build an operator to minimize the application downtime

performing the update deployed with microservices where

tightly coupled with database and service layer. Operator

watches the cluster and checks if the YAML and deployed

versions are the same. If differ operator deploys the database

and application without interrupting the user. The overall

cluster setup is deprecated in Figure 1 and the proposed

techniques are deprecated in Figure 2.

Figure 1

Figure 2

Experimental Setup

➢ To handle the update, First install the custom resource

API(Operator) to the cluster.

➢ Configure the database manually. (The database size I

tested 1M)

➢ Through the operator configure the application in the

kubernetes cluster.

➢ Now, the operator watches the resource version and

YAML version.

➢ GitHub : https://bit.ly/3kaGoZW

Figure 3

Testing 

Testing of the system is conducted under a critical process of

analyzing requirements implemented in the system, and this

process will make sure that software quality is also

Objectives

Introduction

https://bit.ly/3kaGoZW

