

Introduction

Outdoor images are often suffered by suspended atmospheric particles, such as fog, mist, haze and smoke that reduce the quality of images taken in the scene.

FOG MODEL

Foggy Image = Direct Attenuation + Airlight

- I(x) = J(x)t(x) + A(1 t(x))
- I(x) Observed Intensity
- J(x) Scene Radiance
- Global Atmospheric light •
- t(x) transmission map
 - Airlight adds whiteness into the scene.
 - Attenuation decreases the contrast in the scene.

Motivation

To detect the airlight in each regions of degraded image, increase the direct attenuation and restore that image.

Single Image Fog Removal Based on Fusion Strategy

V. Thulasika and A. Ramanan

Department of Computer Science, University of Jaffna, Sri Lanka. v.thula.sika@gmail.com, a.ramanan@jfn.ac.lk

where α is positive scalar.

Fusion Strategy Airlight Estimation Restoration — Transmission Defogged map Estimation Image Image Visibility Corner → Atmospheric Veil Inference → Preserving → Smoothing Block diagram of defogging by fusion strategy The novel parameter α is set to $\lceil 10\sqrt{MSE} \rceil$ based on

Evaluation Criteria

• *MSE*: The mean square error represents the cumulative squared error between the compressed and the original image. The lower the value of MSE, the lower the error.

• PSNR: Peak Signal-to-Noise Ratio is computed in decibels between two images. Higher the PSNR, the better the quality of the compressed or reconstructed image.

Synthetic image

• Foggy Road Image Database (FRIDA)[3].

• FRIDA consists of a total number of 66 colour images of different scenes with resolution 640×480 .

Real image

• Resolution 600×400 [2].

Quantitative Results

Comparison of MSE

•	Contrast	Statistical	Fused method				
	based method	based method	[Ours]				
	[2]	[4]					
	0.0114	0.0117	0.0112				
	0.0097	0.0098	0.0095				
	0.0222	0.0226	0.0201				
	0.0134	0.0138	0.0131				
	0.0175	0.0188	0.0173				
	0.0206	0.0207	0.0204				
	0.0162	0.0181	0.0161				
	0.0148	0.0157	0.0145				
	0.0199	0.0194	0.0192				
	0.0217	0.0221	0.0213				
	0.0218	0.0221	0.0215				
	0.0203	0.0178	0.0192				
20	0.0171	0.0182	0.0168				

Com	parison	ofI	PSN	F
	-			

	Image	Contrast	Statistical	Fused method
		based method	based method	[Ours]
3		[2]	[4]	
문기	1	67.5509	67.4545	67.6467
<u>2</u> 1				
	10	68.2442	68.2119	68.3646
- <u>ĕ</u> (11	64.6625	64.5966	65,1051
Ž				
131	20	66.3743	66.2571	66.51
<u>1</u> 1	21	66.3174	66.0871	66.366
<u> </u>				
- 5 , 1	30	64.9967	64.9789	65.0451
5	31	65.4234	65.5383	65.5417
X 1				
12	40	66.416	66.1842	66.5158
Æ	41	67.0691	66.3794	67.2119
~ 1				
21	50	64.7735	64.6943	64.8412
2 2	51	64.7442	64.6869	64.8161
P -1				
	60	66.6173	66.0919	66.6434
	Average	66.1385	65,7917	66.2123

The results reported in Table 1 and 2 are of $\alpha = 2$.

- fusion.
- techniques.
- pleasing.

References

- /final-project.

- pp.1-4, 2011.

1. Simple but efficient method to improve single image defogging.

2. Works well for synthetic and real images.

3. Based on selection of an appropriate weight map for

4. Outperforms other single image based defogging

5. Restored images are more natural and visually

. K.He, J.Sun, and X.Tang, "Single image haze removal using dark channel prior", In CVPR, pp. 1956-1963, 2009.

2. Real images:https://sites.google.com/site/computervisionadinastoica

3. J.P.Tarel and N.Hautiere, "Fast visibility restoration from a single color or gray level image", In ICCV, pp. 2201-2208, 2009.

4. J.P.Tarel, N.Hautiere, A.Cord, D.Gruyer, and H.Halmaoui, "Improved visibility of road scene images under heterogeneous fog", In IEEE Intelligent Vehicle Symposium, pp. 478-485, 2010.

5. Yan Wang and Bo Wu, "Improved Single Image Dehazing using Dark Channel Prior", In IEEE Intelligent Computing and Intelligent Systems, pp. 789-792, 2010.

6. S. Yang, Q. Zhu, J. Wang, D. Wu and Y. Xie, "An Improved Single Image Haze Removal Algorithm Based on Dark Channel Prior and Histogram Specification", Proc. 3rd International Conf. On Multimedia Technology, Atlantis Press, pp. 279-292, 2013.

7. J.Pang, A.Oscar, and G.Zheng, "Improved single image dehazing using guided filter", In APSIPA Annual Summit and Conference, ACM,

8. Y.Y.Schechner, S.G.Narasimahan and S.Nayar, "Polarization-based vision through haze", Applied Optics, pp. 511-525, 2003.