

A COARSE-TO-FINE STRATEGY IN RECOGNISING LOGOS OF CARS S. SOTHEESWARAN AND A. RAMANAN

1. Introduction

Car logo recognition (CLR) is used to recognise accurately the manufacturer of a car by using its iconic logo. A CLR system in addition to license plate recognition aims to increase the confidence of vehicle monitoring systems in private environments.

The proposed method uses a coarse-to-fine (CTF) strategy in detecting a car towards its logo from an input image.

2. Objective

To propose a CTF strategy that first detects the bounding box of a car, then the grille and at last the logo. The detected logo will be then recognised for the make of a car.

3. Methodology

Our contributions in recognising logos of cars:

- 1. Detection of the bounding box of a Car \Rightarrow using vocabulary voting and mean-shift search
- 2. Detection of the grille of a car \Rightarrow using HOG + SVM
- 3. Localisation of Logo ⇒ using Haar+AdaBoost+Cascade classifier+CHT
- 4. Recognition of Logo \Rightarrow using a Classifier-free vocabulary-based method

4. Dataset

We obtained images of 25 distinct classes of front-view cars with 20 images per class from Google Images with size of 800×600 pixels with no preprocessing.

Example car images of our image set.

Department of Computer Science, University of Jaffna

3.1. Front-view Car Detection

VOCABULARY CONSTRUCTION

The workflow of constructing visual vocabularies for foreground and background objects:

VOCABULARY VOTING

When an unseen image of a car is produced to the system, e-SURF [1] descriptors are extracted from it. Then the foreground keypoints are retained using vocabulary voting strategy.

SCALE-ADAPTIVE MEAN-SHIFT SEARCH Detecting the bounding box of a test image using scale-adaptive searching method and non-maximum suppression technique.

5. Experimental Setup

Size of visual vocabulary= 2000 (i.e., | FG | =1000, | BG | =1000).

No. of scale steps = floor
$$\left(\frac{\log\left(\frac{s_e}{s_s}\right)}{\log\left(s_r\right)} + 1\right)$$
 (1)

$$s_e = 3; s_s = 1; s_r = 1.06$$

We make use of a threshold θ to reject false prediction of bounding boxes. The θ is estimated to every possible bounding box *b* using the equation (2):

 $\theta = \frac{\#Car \text{ keypoints detected inside } b}{\#keypoints \text{ detected inside } b}$

(2)

Rat

Threshold: $\theta = 0.52$

	Car	Logo	Logo
	Detection	Detection	Recognition
e	98.0%	90.8%	86.4%

comparing with the traditional BoF approach.

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust Features," In Computer Vision and Image Understanding, vol. 110, No. 3, pp. 346-359, 2008. [2] N. Dalal, "Finding people in images and videos," PhD thesis, France, 135pp, 2006. [3] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," In proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 511-518, 2001.