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Dataset

A good understanding of plants is essential to improve agricultural s \“‘% This study uses the Flavia dataset. It @ Majority researchers have used a large number of training images
lan for and miticate the worst effects of climate chanee and to area of leaf image smoothed by a 5x5 images) Digital Feature S ‘\ . @ Only a very small number of testing sets (5—10 images/class) are
P g g€, and 2x2 rectangular averaging filters, Morphological |=»{ "ePresentation \ - Each class includes 50-70 sample e
come to a better understanding of life as a whole. A leaf can be respectively. Feature (Store the oW . ing i ' . .
. . . 5 . . 2. Aspect ratio (slimness):  L/W Testing images | /- N descriptors) | images, thus resulting in a total of 1900 ® The selection of testing images made by those researchers
characterised by its colour, its texture, vain structure and its shape P ( ) (947 images) Smooth factor, Aspect % ' ’ : : :
) , Va . ' 3. Form factor (roundness): 4774 /P? 2o Form actor, l, “ 4 images. Each image consists exactly one mentioned as indicated in Table 6 is questionable due the reason of
The colour and texture of a leaf may differ with the seasons and 4. Rectangularity: L x W/A fctor, Perimetor ati — A image with a clear background T p—" R
climatic conditions. Living plant identification based on images of 2- Ea’_m""tfa“"t'f' o diamet E//I; oot onaionen | | features W@ from each of the classes of the Elavia dataset.
) ] ) ] o . Perimeter ratio to diameter: N lisati ) _ .
leaf is a challenging task in the field of pattern recognition and 7. Perimeter ratio to ohysiotegicat width Mormallsation) ..\ N @ The selection of less number of testing images may favour the
computer vision. In this work we focus on classifying plant leaves physiological length and} P/(L +W)  2nd Vein features = ;1' _ classification rate for slightly outperforming our technique.
. i i i hvsiological width assification e . . . . .
using basic, morphological and HOG features. A user just needs to o Ce?’n featgures_ V, V, V; V, V, using estl ng Resu Its © We have used linear SVMs which is quite naturally designed to
. . . . . . A A A A Y Performance [€= k-N t ifi i i i i i
input an image of a plant leaf, and the proposed system will predict A ATATA Neighszlz?sand S PN C|aSSIl;IcatI|:)n I AL dllme?smnal >Paces. : ik
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Flavia dataset consisting of 32 classes. Fig: 4 Experimental setup: Morphological features features with  k-Nearest Neighbour.  features with k-Nearest Neighbour and >  ological feat O, g . -
SVM classifiers morphological features amounting to imensions. also
. . (30%32 = 960 k-NN Basic Digital Digital Morphological performance increase of 4%.
Ig : > Experimental setup: images Feature . . . Classifier Classification rate e u :
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HOG descriptors extraction using =3 re?;:senta:‘tlon Classifier Geometrical | Morphological TNN 28 60 © Our approach shows a classification rate of 95% which outperforms
. . ore the .. .
% To develop an automated system for plant leaf classification of Testing images Hoe descriptors) 1NN 65.00 82.19 3-NN 84.58 the method proposed by Vijay et al., by a performance increase of
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features e Scale the 5-NN 55.83 76.35 9NN 80,25 © Our main argument in this work is not just to show an increased
m \ / features 7-NN 55.94 75.52 OVO SVM 89.23 performance but to propose the selection of discriminative features
Normalisati ] e . .
\V/ NAOIC , ( °rm1'sa on) 9-NN 54.90 73.65 OVASVM 83.10 that could be applied on the classification of Flavia leaves.
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P Classification : : : Table 4: The classification accuracy of :
(Store the (Normalisation) ot using Nearest using basic and morphological - e HOG y have tested on the rest of the images from each of the 32 classes.
The following steps are used in our proposed descriptors) sroTmants Neighbour and features with linear SVM © © Out testing results are very similar to what others have achieved and
system in classifying the plant leaves: l = Feature Classification rate it involves no manual process in extracting features and classifying
~ . Classifier k-Nearest OVO- them
*\ —>* _b‘* c  RGB Classification using Basic Digital Feature Neighbour SVM '
. .. onver k-N t ige i . i SVM i I
Colour image Gray scale image Binary image Resizing N : to Gray " Performance Neighsg:ﬁ‘sand ::Tlli.rli:())(ﬁ)eg?cr:ff:taatlusreetup. pasicand Cl ifi Geometrical Morphologlcal 64x64 78.46 83.42 ®
Fig: 1 RGB to binary conversion ‘ b 0ol A SVM assitier 128x128 84.48 87.86 CO n C u S I O n
' N OoVO 68.23 86.56
Convert C t G ] i . ) ]
RGBtoGrayl °"‘t'§rb,n;?z OVA 34 48 73.96 > This study confirms the importance of leaf basic and morphological
Following features have been used in classifying ‘ Table 5: The classification accuracy using basic, morphological and HOG features features since the results obtained by the feature selection method
the plant leaves: and their concatenation with linear SVM classifiers. Basic Geometrical (BG), Digital selected these features as the most discriminate.
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The classification is compared by using the vector Table 6: A performance comparison of the proposed method with state-of- > The testing result is around 90%. The accuracy of the current
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