

great significance.

A Morphological and Gradient Based Approach to Classify Plant Leaves Using Support Vector Machines

P. Kobikrishna¹ and A. Ramanan²

¹Postgraduate Institute of Science, University of Peradeniya, Sri Lanka ²Department of Computer Science, University of Jaffna, Sri Lanka {kobi, a.ramanan}@jfn.ac.lk

Dataset

This study uses the Flavia dataset. It consists of 32 classes of different plants. Each class includes 50–70 sample images, thus resulting in a total of 1900 images. Each image consists exactly one image with a clear background

Testing Results

Table 1: The classification accuracy morphological k-Nearest Neighbour.

Feature	Classification rate		
k-NN	Basic	Digital	
Classifier	Geometrical	Morphological	
1-NN	65.00	82.19	
3-NN	58.96	78.44	
5-NN	55.83	76.35	
7-NN	55.94	75.52	
9-NN	54.90	73.65	

Table 3: The classification accuracy using basic and morphological

Table 2: The classification accuracy using both basic and morphological features with k-Nearest Neighbour and **SVM** classifiers

Feature	Basic Geometrical and Digital Morphological	
Classifier	(Classification rate)	
1-NN	88.60	
3-NN	84.58	
5-NN	82.79	
7-NN	82.05	
9-NN	80.25	
OVO SVM	89.23	
OVA SVM	83.10	

Table 4: The classification accuracy of the HOG

Feature	Classifi	Classification rate			
SVM	Basic	Digital	Classifier Feature	k-Nearest Neighbour	OVO- SVM
	Geometrical	Morphological	64×64	78.46	83.42
Classifier			128×128	84.48	87.86
OVO	68.23	86.56			
OVA	34.48	73.96			

Table 5: The classification accuracy using basic, morphological and HOG features and their concatenation with linear SVM classifiers. Basic Geometrical (BG), Digital Morphological (DM), Histograms of Oriented Gradient (HOG)

Classification rate				
BG	DM	HOG	BG+DM	BG+DM+HOG
68.23	86.56	87.86	89.23	89.86
34.48	73.96	86.59	83.10	84.48
	BG 68.23 34.48	BG DM 68.23 86.56 34.48 73.96	BG DM HOG 68.23 86.56 87.86 34.48 73.96 86.59	BG DM HOG BG+DM 68.23 86.56 87.86 89.23 34.48 73.96 86.59 83.10

the-art approaches applied on the Flavia dataset

Author	#training images	#testing images	Features	Classifier	Performance
Wu et al.,	40-60	10	Morphological	PNN	90.31
Abdul et al.,	40	10	Shape, vein, colour and texture	PNN	93.75
Vijay et <i>al</i> .,	45-65	5	Colour and shape	ANN	93.30
Ours	30	20–47	Basic, Morphological, and HOG	SVM	89.86

In order to compare our proposed method with other works listed in Table 6, we increase our training set and reduce the testing set as shown in Table 7 so that the comparison becomes same as of others experimental

Table 7: A performance comparison of the proposed method when using large number of training images and testing on small number of images

#training images	#testing images	Features	Performance
40	10	Basic and	94.60
40	5	Morphological	95.01

- used
- from each of the classes of the Flavia dataset.
- ⁽³⁾ The selection of less number of testing images may favour the classification rate for slightly outperforming our technique. ③ We have used linear SVMs which is quite naturally designed to
- perform classification in high dimensional spaces. ○ Our approach shows a classification rate of 94.6% which outperforms the Abdul et al's method [1] with basic and morphological features amounting to 17 dimensions. It also outperforms the method proposed by Wu et al., [5] by a performance increase of 4%.
- © Our approach shows a classification rate of 95% which outperforms the method proposed by Vijay *et al.*, by a performance increase of 1.7%.
- © Our main argument in this work is not just to show an increased performance but to propose the selection of discriminative features that could be applied on the classification of Flavia leaves.
- We have used less number of training images (30 images/class) and have tested on the rest of the images from each of the 32 classes.
- Out testing results are very similar to what others have achieved and it involves no manual process in extracting features and classifying them.

- The five basic and twelve morphological features and HOG features are used to classify 32 types of plant leaves.
- \succ The experimental result demonstrates that the proposed method is effective and efficient.
- \succ The testing result is around 90%. The accuracy of the current proposed approach is comparable to those results reported on Flavia dataset.

- 2. Dalal N. and Triggs B., Histograms of Oriented Gradients for Human Detection, In proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005, 55-79.
- 3. Rifkin R. and Klautau A., In Defense of One-vs-All Classification, Journal of Machine Learning Research, 2004, 5, 101–141. 4. Vijay satti, Anshul satya, and Shanu sharma, An automatic leaf recognition
- system for plant identification using machine vision technology, International Journal of Engineering Science & Technology, 2013, 874-879.
- 5. Wu S G., Bao F S, Xu E Y., Wang Yu-Xuan., Chang Yi-Fan. and Xiang Qiao-Liang., A Leaf Recognition Algorithm for Plant Classification using Probabilistic Neural Network, Signal Processing and Information Teschnology, 2007, 11-16.

Discussion

8 Majority researchers have used a large number of training images (40–65 images/class) to train their proposed systems. ⊗ Only a very small number of testing sets (5–10 images/class) are

⁽³⁾ The selection of testing images made by those researchers mentioned as indicated in Table 6 is questionable due the reason of selecting just five images though at least 20 images are available

Conclusion

> This study confirms the importance of leaf basic and morphological features since the results obtained by the feature selection method selected these features as the most discriminate.

References

1. Abdul Kadir, Lukito Edi Nugroho, Adhi Susanto and Paulus Insap Santosa, Leaf classification using shape, color, and texture features, **2011**, 225-230.